Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of the American College of Radiology : JACR

Diagnostic radiology (DxR), having had successful serial co-evolutions with imaging equipment and PACS, is faced with another. With a backdrop termed "globotics transition," it should create an IT and informatics infrastructure capable of integrating artificial intelligence (AI) into current critical communication functions of PACS and incorporating functions currently residing in balkanized products. DxR will face the challenge of adopting sustaining and disruptive AI innovations simultaneously. In this co-evolution, a major selection force for AI will be increasing the flow of information and patients; "increasing" means faster flow over larger areas defined by geography and content. Larger content includes a broader spectrum of imaging and nonimaging information streams that facilitate medical decision making. Evolution to faster flow will gravitate toward a hierarchical IT architecture consisting of many small channels feeding into fewer larger channels, something potentially difficult for current PACS. Smartphone-like architecture optimized for communication and integration could provide a large-channel backbone and many smaller feeding channels for basic functions, as well as those needing to innovate rapidly. New, more flexible architectures stimulate market competition in which DxR could act as an artificial selection force to influence development of faster increased flow in current PACS companies, in disruptors such as consolidated AI companies, or in entirely new entrants like Apple or Google. In this co-evolution, DxR should be able to stimulate design of a modern communication medium that increases the flow of information and decreases the time and energy necessary to absorb it, thereby creating even more indispensable clinical value for itself.

Enzmann Dieter R, Arnold Corey W, Zaragoza Edward, Siegel Eliot, Pfeffer Michael A


Co-evolution, PACS, competition, flow, information, information technology (IT), machine/deep learning (ML/DL), selection force, smartphone, value