Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Virchows Archiv : an international journal of pathology

Overlapping histological features between benign and malignant lesions and a lack of firm diagnostic criteria for malignancy result in high rates of inter-observer variation in the diagnosis of melanocytic lesions. We aimed to investigate the differential expression of five miRNAs (21, 200c, 204, 205, and 211) in benign naevi (n = 42), dysplastic naevi (n = 41), melanoma in situ (n = 42), and melanoma (n = 42) and evaluate their potential as diagnostic biomarkers of melanocytic lesions. Real-time PCR showed differential miRNA expression profiles between benign naevi; dysplastic naevi and melanoma in situ; and invasive melanoma. We applied a random forest machine learning algorithm to classify cases based on their miRNA expression profiles, which resulted in a ROC curve analysis of 0.99 for malignant melanoma and greater than 0.9 for all other groups. This indicates an overall very high accuracy of our panel of miRNAs as a diagnostic biomarker of benign, dysplastic, and malignant melanocytic lesions. However, the impact of variable lesion percentage and spatial expression patterns of miRNAs on these real-time PCR results was also considered. In situ hybridisation confirmed the expression of miRNA 21 and 211 in melanocytes, while demonstrating expression of miRNA 205 only in keratinocytes, thus calling into question its value as a biomarker of melanocytic lesions. In conclusion, we have validated some miRNAs, including miRNA 21 and 211, as potential diagnostic biomarkers of benign, dysplastic, and malignant melanocytic lesions. However, we also highlight the crucial importance of considering tissue morphology and spatial expression patterns when using molecular techniques for the discovery and validation of new biomarkers.

Quiohilag Katherine, Caie Peter, Oniscu Anca, Brenn Thomas, Harrison David

2020-May-09

Dermatopathology, Melanoma, Molecular pathology, microRNA