Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

ArXiv Preprint

We propose our solution to a particular practical problem in the domain of vehicle routing and scheduling. The generic task is finding the best allocation of the minimum number of \emph{mobile resources} that can provide periodical services in remote locations. These \emph{mobile resources} are based at a single central location. Specifications have been defined initially for a real-life application that is the starting point of an ongoing project. Particularly, the goal is to mitigate health problems in rural areas around a city in Romania. Medically equipped vans are programmed to start daily routes from county capital, provide a given number of examinations in townships within the county and return to the capital city in the same day. From the health care perspective, each van is equipped with an ultrasound scanner, and they are scheduled to investigate pregnant woman each trimester aiming to diagnose potential problems. The project is motivated by reports currently ranking Romania as the country with the highest infant mortality rate in the European Union. We developed our solution in two phases: modeling of the most relevant parameters and data available for our goal and then design and implement an algorithm that provides an optimized solution. The most important metric of an output scheduling is the number of vans that are necessary to provide a given amount of examination time per township, followed by total travel time or fuel consumption, number of different routes, and others. Our solution implements two probabilistic algorithms out of which we chose the one that performs the best.

Cosmin Pascaru, Paul Diac