Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Kidney international ; h5-index 87.0

With biomedical research transitioning into data-rich science, machine learning provides a powerful toolkit for extracting knowledge from large-scale biological data sets. The increasing availability of comprehensive kidney omics compendia (transcriptomics, proteomics, metabolomics, and genome sequencing), as well as other data modalities such as electronic health records, digital nephropathology repositories, and radiology renal images, makes machine learning approaches increasingly essential for analyzing human kidney data sets. Here, we discuss how machine learning approaches can be applied to the study of kidney disease, with a particular focus on how they can be used for understanding the relationship between genotype and phenotype.

Sealfon Rachel S G, Mariani Laura H, Kretzler Matthias, Troyanskaya Olga G


deep learning, genotype, machine learning