Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society

Plaque rupture and subsequent thrombosis are major processes of acute cardiovascular events. The Vulnerability Index is a very important indicator of whether a plaque is ruptured, and these easily ruptured or fragile plaques can be detected early. The higher the general vulnerability index, the higher the instability of the plaque. Therefore, determining a clear vulnerability index classification point can effectively reduce unnecessary interventional therapy. However, the current critical value of the vulnerability index has not been well defined. In this study, we proposed a neural network-based method to determine the critical point of vulnerability index that distinguishes vulnerable plaques from stable ones. Firstly, based on MatConvNet, the intravascular ultrasound images under different vulnerability index labels are classified. Different vulnerability indexes can obtain different accuracy rates for the demarcation points. The corresponding data points are fitted to find the existing relationship to judge the highest classification. In this way, the vulnerability index corresponding to the highest classification accuracy rate is judged. Then the article is based on the same experiment of different components of the aortic artery in the artificial neural network, and finally the vulnerability index corresponding to the highest classification accuracy can be obtained. The results show that the best vulnerability index point is 1.716 when the experiment is based on the intravascular ultrasound image, and the best vulnerability index point is 1.607 when the experiment is based on the aortic artery component data. Moreover, the vulnerability index and classification accuracy rate has a periodic relationship within a certain range, and finally the highest AUC is 0.7143 based on the obtained vulnerability index point on the verification set. In this paper, the convolution neural network is used to find the best vulnerability index classification points. The experimental results show that this method has the guiding significance for the classification and diagnosis of vulnerable plaques, further reduce interventional treatment of cardiovascular disease.

Cao Yankun, Xiao Xiaoyan, Liu Zhi, Yang Meijun, Sun Dianmin, Guo Wei, Cui Lizhen, Zhang Pengfei


Atherosclerosis, Data fitting, Matconvnet, Vulnerability index