Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Artificial intelligence in medicine ; h5-index 34.0

As a crucial step of biological event extraction, event trigger identification has attracted much attention in recent years. Deep representation methods, which have the superiorities of less feature engineering and end-to-end training, show better performance than statistical methods. While most deep learning methods have been done on sentence-level event extraction, there are few works taking document context into account, losing potentially informative knowledge that is beneficial for trigger detection. In this paper, we propose a variational neural approach for biomedical event extraction, which can take advantage of latent topics underlying documents. By adopting a joint modeling manner of topics and events, our model is able to produce more meaningful and event-indicative words compare to prior topic models. In addition, we introduce a language model embeddings to capture context-dependent features. Experimental results show that our approach outperforms various baselines in a commonly used multi-level event extraction corpus.

Zhang Junchi, Liu Mengchi, Zhang Yue


Biomedical event extraction, Neural network, Neural topic model, Variational inference