Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In IEEE journal of biomedical and health informatics

Ischemic stroke is a major cause of death and disability in adulthood worldwide. Because it has highly heterogeneous phenotypes, phenotyping of ischemic stroke is an essential task for medical research and clinical prognostication. However, this task is not a trivial one when the study population is large. Phenotyping of ischemic stroke depends primarily on manual annotation of medical records in previous studies. This study evaluated various strategies for automated phenotyping of ischemic stroke into the four subtypes of the Oxfordshire Community Stroke Project classification based on structured and unstructured data from electronical medical records (EMRs). A total of 4640 adult patients who were hospitalized for acute ischemic stroke in a teaching hospital were included. In addition to the structured items in the National Institutes of Health Stroke Scale, unstructured clinical narratives were preprocessed using MetaMap to identify medical concepts, which were then encoded into feature vectors. Various supervised machine learning algorithms were used to build classifiers. The study results indicate that textual information from EMRs could facilitate phenotyping of ischemic stroke when this information was combined with structured information. Furthermore, decomposition of this multi-class problem into binary classification tasks followed by aggregation of classification results could improve the performance.

Sung Sheng-Feng, Lin Chia-Yi, Hu Ya-Han

2020-Feb-28