Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Proceedings. IEEE International Symposium on Biomedical Imaging ; h5-index 0.0

Multi-modal biological, imaging, and neuropsychological markers have demonstrated promising performance for distinguishing Alzheimer's disease (AD) patients from cognitively normal elders. However, it remains difficult to early predict when and which mild cognitive impairment (MCI) individuals will convert to AD dementia. Informed by pattern classification studies which have demonstrated that pattern classifiers built on longitudinal data could achieve better classification performance than those built on cross-sectional data, we develop a deep learning model based on recurrent neural networks (RNNs) to learn informative representation and temporal dynamics of longitudinal cognitive measures of individual subjects and combine them with baseline hippocampal MRI for building a prognostic model of AD dementia progression. Experimental results on a large cohort of MCI subjects have demonstrated that the deep learning model could learn informative measures from longitudinal data for characterizing the progression of MCI subjects to AD dementia, and the prognostic model could early predict AD progression with high accuracy.

Li Hongming, Fan Yong


Alzheimer’s disease, Prognosis, longitudinal data, recurrent neural networks