Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of applied crystallography ; h5-index 0.0

X-ray reflectivity (XRR) is a powerful and popular scattering technique that can give valuable insight into the growth behavior of thin films. This study shows how a simple artificial neural network model can be used to determine the thickness, roughness and density of thin films of different organic semiconductors [diindenoperylene, copper(II) phthalocyanine and α-sexithiophene] on silica from their XRR data with millisecond computation time and with minimal user input or a priori knowledge. For a large experimental data set of 372 XRR curves, it is shown that a simple fully connected model can provide good results with a mean absolute percentage error of 8-18% when compared with the results obtained by a genetic least mean squares fit using the classical Parratt formalism. Furthermore, current drawbacks and prospects for improvement are discussed.

Greco Alessandro, Starostin Vladimir, Karapanagiotis Christos, Hinderhofer Alexander, Gerlach Alexander, Pithan Linus, Liehr Sascha, Schreiber Frank, Kowarik Stefan


X-ray reflectivity, machine learning, neural networks, organic semi-conductors