Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Foods (Basel, Switzerland) ; h5-index 0.0

Narrow-leaved oleaster (Elaeagnus angustifolia) fruit is a kind of natural product used as food and traditional medicine. Narrow-leaved oleaster fruits from different geographical origins vary in chemical and physical properties and differ in their nutritional and commercial values. In this study, near-infrared hyperspectral imaging covering the spectral range of 874-1734 nm was used to identify the geographical origins of dry narrow-leaved oleaster fruits with machine learning methods. Average spectra of each single narrow-leaved oleaster fruit were extracted. Second derivative spectra were used to identify effective wavelengths. Partial least squares discriminant analysis (PLS-DA) and support vector machine (SVM) were used to build discriminant models for geographical origin identification using full spectra and effective wavelengths. In addition, deep convolutional neural network (CNN) models were built using full spectra and effective wavelengths. Good classification performances were obtained by these three models using full spectra and effective wavelengths, with classification accuracy of the calibration, validation, and prediction set all over 90%. Models using effective wavelengths obtained close results to models using full spectra. The performances of the PLS-DA, SVM, and CNN models were close. The overall results illustrated that near-infrared hyperspectral imaging coupled with machine learning could be used to trace geographical origins of dry narrow-leaved oleaster fruits.

Gao Pan, Xu Wei, Yan Tianying, Zhang Chu, Lv Xin, He Yong

2019-Nov-27

convolutional neural network, effective wavelengths, geographical origin, narrow-leaved oleaster fruits, near-infrared hyperspectral imaging