Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

arxiv preprint

We present an approach for efficiently training Gaussian Mixture Models (GMMs) with Stochastic Gradient Descent (SGD) on large amounts of high-dimensional data (e.g., images). In such a scenario, SGD is strongly superior in terms of execution time and memory usage, although it is conceptually more complex than the traditional Expectation-Maximization (EM) algorithm. For enabling SGD training, we propose three novel ideas: First, we show that minimizing an upper bound to the GMM log likelihood instead of the full one is feasible and numerically much more stable way in high-dimensional spaces. Secondly, we propose a new annealing procedure that prevents SGD from converging to pathological local minima. We also propose an SGD-compatible simplification to the full GMM model based on local principal directions, which avoids excessive memory use in high-dimensional spaces due to quadratic growth of covariance matrices. Experiments on several standard image datasets show the validity of our approach, and we provide a publicly available TensorFlow implementation.

Alexander Gepperth, Benedikt Pfülb

2019-12-18