Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society ; h5-index 0.0

In the field of upper-limb myoelectric prosthesis control, the use of statistical and machine learning methods has been long proposed as a means of enabling intuitive grip selection and actuation. Recently, this paradigm has found its way toward commercial adoption. Machine learning-based prosthesis control typically relies on the use of a large number of electrodes. Here, we propose an end-to-end strategy for multi-grip, classification-based prosthesis control using only two sensors, comprising () electrodes and s (s). We emphasize the importance of accurately estimating posterior class probabilities and rejecting predictions made with low confidence, so as to minimize the rate of unintended prosthesis activations. To that end, we propose a confidence-based error rejection strategy using grip-specific thresholds. We evaluate the efficacy of the proposed system with real-time pick and place experiments using a commercial multi-articulated prosthetic hand and involving 12 able-bodied and two transradial (i.e., below-elbow) amputee participants. Results promise the potential for deploying intuitive, classification-based multi-grip control in existing upper-limb prosthetic systems subject to small modifications.

Krasoulis Agamemnon, Vijayakumar Sethu, Nazarpour Kianoush