Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In IEEE/ACM transactions on computational biology and bioinformatics ; h5-index 0.0

X-ray crystallography is the most popular approach for analyzing protein 3D structure. However, the success rate of protein crystallization is very low (2%-10%). To reduce the cost of time and resources, lots of computation-based methods are developed to detect the protein crystallization. Improving the accuracy of predicting protein crystallization is very important for the determination of protein structure by X-ray crystallography. At present, many machine learning methods are used to predict protein crystallization. In this work, we propose a Fuzzy Support Vector Machine based on Linear Neighborhood Representation (FSVM-LNR) to predict the crystallization propensity of proteins. Proteins are represented by three types of features (PsePSSM, PSSM-DWT, MMI-PS), and these features are serially combined and fed into FSVM-LNR. FSVM-LNR can filter outliers by membership score, which is calculated via reconstruction residuals of k nearest samples. To evaluate the performance of our predictive model, we test FSVM-LNR on the datasets of TRAIN3587, TEST3585 and TEST500. Our method achieves better Mathew's correlation coefficient (MCC) on TRAIN3587 (MCC: 0.56) and TEST3585 (MCC: 0.58). Although the performance of independent test is not the best on TEST500, FSVM-LNR also has a certain predictability (MCC: 0.70) in the identification of protein crystallization.

Ding Yijie, Tang Jijun, Guo Fei