Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In GigaScience ; h5-index 0.0

BACKGROUND : Measurement of plant traits with precision and speed on large populations has emerged as a critical bottleneck in connecting genotype to phenotype in genetics and breeding. This bottleneck limits advancements in understanding plant genomes and the development of improved, high-yielding crop varieties.

RESULTS : Here we demonstrate the application of deep learning on proximal imaging from a mobile field vehicle to directly estimate plant morphology and developmental stages in wheat under field conditions. We developed and trained a convolutional neural network with image datasets labeled from expert visual scores and used this "breeder-trained" network to classify wheat morphology and developmental stages. For both morphological (awned) and phenological (flowering time) traits, we demonstrate high heritability and very high accuracy against the "ground-truth" values from visual scoring. Using the traits predicted by the network, we tested genotype-to-phenotype association using the deep learning phenotypes and uncovered novel epistatic interactions for flowering time. Enabled by the time-series high-throughput phenotyping, we describe a new phenotype as the rate of flowering and show heritable genetic control for this trait.

CONCLUSIONS : We demonstrated a field-based high-throughput phenotyping approach using deep learning that can directly measure morphological and developmental phenotypes in genetic populations from field-based imaging. The deep learning approach presented here gives a conceptual advancement in high-throughput plant phenotyping because it can potentially estimate any trait in any plant species for which the combination of breeder scores and high-resolution images can be obtained, capturing the expert knowledge from breeders, geneticists, pathologists, and physiologists to train the networks.

Wang Xu, Xuan Hong, Evers Byron, Shrestha Sandesh, Pless Robert, Poland Jesse


convolutional neural network, deep learning, genetic architecture, plant breeding, wheat