Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Cell ; h5-index 250.0

Distributing learning across multiple layers has proven extremely powerful in artificial neural networks. However, little is known about how multi-layer learning is implemented in the brain. Here, we provide an account of learning across multiple processing layers in the electrosensory lobe (ELL) of mormyrid fish and report how it solves problems well known from machine learning. Because the ELL operates and learns continuously, it must reconcile learning and signaling functions without switching its mode of operation. We show that this is accomplished through a functional compartmentalization within intermediate layer neurons in which inputs driving learning differentially affect dendritic and axonal spikes. We also find that connectivity based on learning rather than sensory response selectivity assures that plasticity at synapses onto intermediate-layer neurons is matched to the requirements of output neurons. The mechanisms we uncover have relevance to learning in the cerebellum, hippocampus, and cerebral cortex, as well as in artificial systems.

Muller Salomon Z, Zadina Abigail N, Abbott L F, Sawtell Nathaniel B


corollary discharge, dendritic spikes, electric fish, learning, neural networks, synaptic plasticity