Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In European radiology ; h5-index 62.0

OBJECTIVE : To develop and evaluate the performance of U-Net for fully automated localization and segmentation of cervical tumors in magnetic resonance (MR) images and the robustness of extracting apparent diffusion coefficient (ADC) radiomics features.

METHODS : This retrospective study involved analysis of MR images from 169 patients with cervical cancer stage IB-IVA captured; among them, diffusion-weighted (DW) images from 144 patients were used for training, and another 25 patients were recruited for testing. A U-Net convolutional network was developed to perform automated tumor segmentation. The manually delineated tumor region was used as the ground truth for comparison. Segmentation performance was assessed for various combinations of input sources for training. ADC radiomics were extracted and assessed using Pearson correlation. The reproducibility of the training was also assessed.

RESULTS : Combining b0, b1000, and ADC images as a triple-channel input exhibited the highest learning efficacy in the training phase and had the highest accuracy in the testing dataset, with a dice coefficient of 0.82, sensitivity 0.89, and a positive predicted value 0.92. The first-order ADC radiomics parameters were significantly correlated between the manually contoured and fully automated segmentation methods (p < 0.05). Reproducibility between the first and second training iterations was high for the first-order radiomics parameters (intraclass correlation coefficient = 0.70-0.99).

CONCLUSION : U-Net-based deep learning can perform accurate localization and segmentation of cervical cancer in DW MR images. First-order radiomics features extracted from whole tumor volume demonstrate the potential robustness for longitudinal monitoring of tumor responses in broad clinical settings. U-Net-based deep learning can perform accurate localization and segmentation of cervical cancer in DW MR images.

KEY POINTS : • U-Net-based deep learning can perform accurate fully automated localization and segmentation of cervical cancer in diffusion-weighted MR images. • Combining b0, b1000, and apparent diffusion coefficient (ADC) images exhibited the highest accuracy in fully automated localization. • First-order radiomics feature extraction from whole tumor volume was robust and could thus potentially be used for longitudinal monitoring of treatment responses.

Lin Yu-Chun, Lin Chia-Hung, Lu Hsin-Ying, Chiang Hsin-Ju, Wang Ho-Kai, Huang Yu-Ting, Ng Shu-Hang, Hong Ji-Hong, Yen Tzu-Chen, Lai Chyong-Huey, Lin Gigin

2019-Nov-11

Apparent diffusion coefficient, Deep learning, Diffusion-weighted imaging, Radiomics, Uterine cervical neoplasm