Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

Object recognition and localization is still a very challenging problem, despite recent advances in deep learning (DL) approaches, especially for objects with varying shapes and appearances. Statistical models, such as an Active Shape Model (ASM), rely on a parametric model of the object, allowing an easy incorporation of prior knowledge about shape and appearance in a principled way. To take advantage of these benefits, this paper proposes a new ASM framework that addresses two tasks: (i) comparing the performance of several image features used to extract observations from an input image; and (ii) improving the performance of the model fitting by relying on a probabilistic framework that allows the use of multiple observations and is robust to the presence of outliers. The goal in (i) is to maximize the quality of the observations by exploring a wide set of handcrafted features (HOG, SIFT, and texture templates) and more recent DL-based features. Regarding (ii), we use the Generalized Expectation-Maximization algorithm to deal with outliers and to extend the fitting process to multiple observations. The proposed framework is evaluated in the context of facial landmark fitting and the segmentation of the endocardium of the left ventricle in cardiac magnetic resonance volumes. We experimentally observe that the proposed approach is robust not only to outliers, but also to adverse initialization conditions and to large search regions (from where the observations are extracted from the image). Furthermore, the results of the proposed combination of the ASM with DL-based features are competitive with more recent DL approaches (e.g. FCN [1], U-Net [2] and CNN Cascade [3]), showing that it is possible to combine the benefits of statistical models and DL into a new deep ASM probabilistic framework.

Medley Daniela O, Santiago Carlos, Nascimento Jacinto C