Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Protein and peptide letters

Protein-related interaction prediction is critical to understanding life processes, biological functions, and mechanisms of drug action. Experimental methods used to determine protein-related interactions have always been costly and inefficient. In recent years, advances in biological and medical technology have provided us with explosive biological and physiological data, deep learning-based algorithms have shown great promise in extracting features and learning patterns from complex data. At present, deep learning in protein research has emerged. In this review, we provide an introductory overview of the deep neural network theory and its unique properties. Mainly focused on the application of this technology in protein-related interactions prediction over the past five years, including protein-protein interactions prediction, protein-RNA\DNA, Protein-drug interactions prediction, and so on. Finally, we discuss some of the challenges that deep learning currently faces.

Shi Cheng, Chen Jiaxing, Kang Xinyue, Zhao Guiling, Lao Xingzhen, Zheng Heng


Computational biology, Deep learning, Machine learning, Protein interactions, Protein-RNA/DNA interactions