Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Clinical EEG and neuroscience

Attention deficit hyperactivity disorder (ADHD) is a childhood behavioral disorder that can persist into adulthood. Electroencephalography (EEG) plays a significant role in assessing the neurophysiology of ADHD because of its ability to reveal complex brain activity. The present study proposes an EEG-based diagnosis system using the phase space reconstruction technique to classify ADHD and control adults. Electric activity is recorded for 47 ADHD and 50 control adults during the eyes-open, eyes-closed, and Continuous Performance Test (CPT) condition. Various statistical features are extracted from Euclidean distances based on phase space reconstruction of signals. The proposed system is evaluated with 2 feature selection methods (correlation-based feature selection and particle swarm optimization) and 5 machine learning methods (neural dynamic classifier, support vector machine, enhanced probabilistic neural network, k-nearest neighbor, and naive-Bayes classifier). Experimental results showed the highest testing accuracy of 93.3% under the eyes-open, 90% under the eyes-closed, and 100% under the CPT condition. This study focused on the utility of phase space reconstruction of brain signals to discriminate between ADHD and control adults.

Kaur Simranjit, Singh Sukhwinder, Arun Priti, Kaur Damanjeet, Bajaj Manoj


EEG, adults, attention deficit hyperactivity disorder, continuous performance test, phase space reconstruction