Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Optics express

In this paper, an effective wavelength detection approach based on long short-term memory (LSTM) network is proposed for fiber Bragg grating (FBG) sensor networks. The FBG sensor network utilizes a model-sharing mechanism, where the whole spectral wavelength is divided into several shareable regions and spectral overlap is allowed in each region. LSTM, a representative recurrent neural network in deep learning, is applied to learn the features directly from the spectra of FBGs and build the wavelength detection model. By feeding the spectra sequentially into the well-trained model, the Bragg wavelengths of FBGs can be quickly determined under overlap. The obtained LSTM model can be repeatedly used without re-training to improve the multiplexing capability. The results demonstrate that the LSTM-based method can realize high-accuracy and high-speed wavelength detection in the spectral overlapping situations. The proposed approach offers a flexible tool to enhance the sensing capacity of FBG sensor networks.

Jiang Hao, Zeng Qiying, Chen Jing, Qiu Xiaojie, Liu Xinyu, Chen Zhenghua, Miao Xiren