Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In NPJ digital medicine

Over- and under-sedation are common in the ICU, and contribute to poor ICU outcomes including delirium. Behavioral assessments, such as Richmond Agitation-Sedation Scale (RASS) for monitoring levels of sedation and Confusion Assessment Method for the ICU (CAM-ICU) for detecting signs of delirium, are often used. As an alternative, brain monitoring with electroencephalography (EEG) has been proposed in the operating room, but is challenging to implement in ICU due to the differences between critical illness and elective surgery, as well as the duration of sedation. Here we present a deep learning model based on a combination of convolutional and recurrent neural networks that automatically tracks both the level of consciousness and delirium using frontal EEG signals in the ICU. For level of consciousness, the system achieves a median accuracy of 70% when allowing prediction to be within one RASS level difference across all patients, which is comparable or higher than the median technician-nurse agreement at 59%. For delirium, the system achieves an AUC of 0.80 with 69% sensitivity and 83% specificity at the optimal operating point. The results show it is feasible to continuously track level of consciousness and delirium in the ICU.

Sun Haoqi, Kimchi Eyal, Akeju Oluwaseun, Nagaraj Sunil B, McClain Lauren M, Zhou David W, Boyle Emily, Zheng Wei-Long, Ge Wendong, Westover M Brandon


Diagnostic markers, Disorders of consciousness, Translational research