Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Applied optics

For 3D imaging and shape measurement, simultaneously achieving real-time and high-accuracy performance remains a challenging task in practice. In this paper, a fringe-projection-based 3D imaging and shape measurement technique using a three-chip liquid-crystal-display (3LCD) projector and a deep machine learning scheme is presented. By encoding three phase-shifted fringe patterns into the red, green, and blue (RGB) channels of a color image and controlling the 3LCD projector to project the RGB channels individually, the technique can synchronize the projector and the camera to capture the required fringe images at a fast speed. In the meantime, the 3D imaging and shape measurement accuracy is dramatically improved by introducing a novel phase determination approach built on a fully connected deep neural network (DNN) learning model. The proposed system allows performing 3D imaging and shape measurement of multiple complex objects at a real-time speed of 25.6 fps with relative accuracy of 0.012%. Experiments have shown great promise for advancing scientific and engineering applications.

Nguyen Hieu, Dunne Nicole, Li Hui, Wang Yuzeng, Wang Zhaoyang