Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society

Acupuncture manipulation is the key of Chinese medicine acupuncture therapy. In clinical practice, different acupuncture manipulations are required to achieve different therapeutic effects, which means it is crucial to distinguish different acupuncture manipulations. In this paper, we proposed a classification framework for different acupuncture manipulations, which employed the graph theory and machine learning method. Multichannel EEG signals evoked by acupuncture at "Zusanli" acupoint were recorded from healthy humans by two acupuncture manipulations: twirling-rotating (TR) and lifting-thrusting (LT). Phase locking value was used to estimate the phase synchronization of pair-wise EEG channels. It was found that acupunctured by TR manipulation exhibit significantly higher synchronization degree than acupunctured by LT manipulation. With the construction of functional brain network, the topological features of graph theory were extracted. Taken the network features as inputs, machine learning classifiers were established to classify acupuncture manipulations. The highest accuracy can achieve 92.14% with support vector machine. By further optimizing the network features utilized in machine learning classifiers, it was found that the combination of node betweenness and small world network index is the most effective factor for acupuncture manipulations classification. These findings suggested that our approach provides new ideas for automatically identify acupuncture manipulations from the perspective of functional brain networks and machine learning methods.

Yu Haitao, Li Xiang, Lei Xinyu, Wang Jiang