Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computational and mathematical methods in medicine

Early diagnosis of dengue continues to be a concern for public health in countries with a high incidence of this disease. In this work, we compared two machine learning techniques: artificial neural networks (ANN) and support vector machines (SVM) as assistance tools for medical diagnosis. The performance of classification models was evaluated in a real dataset of patients with a previous diagnosis of dengue extracted from the public health system of Paraguay during the period 2012-2016. The ANN multilayer perceptron achieved better results with an average of 96% accuracy, 96% sensitivity, and 97% specificity, with low variation in thirty different partitions of the dataset. In comparison, SVM polynomial obtained results above 90% for accuracy, sensitivity, and specificity.

Mello-Román Jorge D, Mello-Román Julio C, Gómez-Guerrero Santiago, García-Torres Miguel

2019