Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In European journal of medicinal chemistry

Dengue fever is a mosquito-borne viral disease that has become a major public health concern worldwide. This disease presents with a wide range of clinical manifestations, from a mild cold-like illness to the more serious hemorrhagic dengue fever and dengue shock syndrome. Currently, neither an approved drug nor an effective vaccine for the treatment are available to fight the disease. The envelope protein (E) is a major component of the virion surface. This protein plays a key role during the viral entry process, constituting an attractive target for the development of antiviral drugs. The crystal structure of the E protein reveals the existence of a hydrophobic pocket occupied by the detergent n-octyl-β-d-glucoside (β-OG). This pocket lies at the hinge region between domains I and II and is important for the low pH-triggered conformational rearrangement required for the fusion of the virion with the host's cell. Aiming at the design of novel molecules which bind to E and act as virus entry inhibitors, we undertook a de novo design approach by "growing" molecules inside the hydrophobic site (β-OG). From more than 240000 small-molecules generated, the 2,4 pyrimidine scaffold was selected as the best candidate, from which one synthesized compound displayed micromolar activity. Molecular dynamics-based optimization was performed on this hit, and thirty derivatives were designed in silico, synthesized and evaluated on their capacity to inhibit dengue virus entry into the host cell. Four compounds were found to be potent antiviral compounds in the low-micromolar range. The assessment of drug-like physicochemical and in vitro pharmacokinetic properties revealed that compounds 3e and 3h presented acceptable solubility values and were stable in mouse plasma, simulated gastric fluid, simulated intestinal fluid, and phosphate buffered saline solution.

Leal Emilse S, Adler Natalia S, Fernández Gabriela A, Gebhard Leopoldo G, Battini Leandro, Aucar Maria G, Videla Mariela, Monge María Eugenia, Hernández de Los Ríos Alejandro, Acosta Dávila John Alejandro, Morell María L, Cordo Sandra M, García Cybele C, Gamarnik Andrea V, Cavasotto Claudio N, Bollini Mariela

2019-Aug-15

Anti-Dengue virus compounds, De novo design, Molecular dynamics, Pharmacokinetics in vitro properties